Modeling the Deformation and Failure Behavior of FCC and HCP Nanocrystalline Materials

نویسندگان

  • Yujie Wei
  • Lallit Anand
چکیده

As foreseen by Richard Feynman in his famous talk titled There's Plenty of Room at the Bottom in 1959, scientists nowadays are miniaturizing structures in materials to achieve better performance as concerned in technical applications. Reducing grain sizes in polycrystalline materials into the range of less than 100nm, for example, could achieve extraordinary high strength in these so called nanocrystalline (nc) materials. The reduced grain size gives rise to new deformation mechanisms in nc materials. It is now widely accepted that there is a strong interplay between dislocation-based deformation in the crystalline grain interiors and the inelastic deformation mechanisms operative in the grain-boundary regions. Grain-boundary regions play an increasingly significant role as the grain size decreases below the 100nm level. In this dissertation, constitutive models have been developed to investigate the deformation mechanisms of nc materials, with focus on modeling grain-boundary decohesion in nc materials. Two micromechanical models have been developed to capture the deformation in grain boundaries in nc materials. To the end, a phenomenological constitutive model has been developed for powder-processed nc materials, where the plastic flow could be pressure-dependent, plastically-dilatant, and non-normal. To model the deformation in grain boundaries, we made the assumption that the mechanical behavior of a grain boundary is governed by the interaction of two coupled surfaces of neighboring grains. Mechanical response due to the relative sliding and separation between the two coupled surfaces is represented by traction-separation laws. An isothermal, rate-independent elastic-plastic interface model has been developed, which accounts for both reversible elastic, as well as irreversible inelastic separation-sliding deformations at the interface prior to failure. The interface model, which represents the deformation in grain boundaries, is coupled with an isothermal, rate-independent crystal-plasticity model for grain interiors, and to study the deformation and fracture response of nc nickel. Secondly, motivated by the fact that the ultimate size limit for nc materials would be bulk amorphous materials, we treated the non-equilibrium, more or less disordered grain boundaries in nc material as amorphous layers with finite thickness of ~ Inm. 3 A viscoplastic amorphous constitutive model is applied to capture the deformation in grain-boundary regions. The model has been applied to predict the mechanical behavior of nc nickel with different grain sizes and subject to tensile deformation at different strain-rates. Many nanocrystalline materials are made by powder-consolidation; and their macroscopic response is reminiscent of cohesive granular materials. Based on the deformation behavior observed on powder consolidated nc materials from different groups, we have formulated a model for the response of pressure-sensitive and plastically-dilatant elastic-viscoplastic powder consolidated nc materials; where the plastic flow could be pressure-dependent, plastically dilatant, and non-normal. Thesis Supervisor: Lallit Anand Title: Professor

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Element Modeling of Strain Rate and Grain Size Dependency in Nanocrystalline Materials

Nanocrystalline materials show a higher strain-rate sensitivity in contrast to the conventional coarse-grained materials and a different grain size dependency. To explain these phenomenon, a finite element model is constructed that considers both grain interior and grain boundary deformation of nanocrystalline materials. The model consist of several crystalline cores with different orientations...

متن کامل

Mechanical Characteristics and Failure Mechanism of Nano-Single Crystal Aluminum Based on Molecular Dynamics Simulations: Strain Rate and Temperature Effects

Besides experimental methods, numerical simulations bring benefits and great opportunities to characterize and predict mechanical behaviors of materials especially at nanoscale. In this study, a nano-single crystal aluminum (Al) as a typical face centered cubic (FCC) metal was modeled based on molecular dynamics (MD) method and by applying tensile and compressive strain loadings its mechanical ...

متن کامل

Twin intersection mechanisms in nanocrystalline fcc metals

Deformation twins have been reported to produce high strength and ductility. Intersections of deformation twins may affect the microstructural evolution during plastic deformation and consequently influence mechanical properties. However, the mechanisms governing twin-intersection behavior remain poorly understood. In this study, we investigated twin intersection mechanisms by observing twin tr...

متن کامل

In situ phase transformation and deformation of iron at high pressure and temperature

With a membrane based mechanism to allow for pressure change in a sample in a radial diffraction diamond anvil cell and simultaneous infrared laser heating, it is now possible to investigate texture changes during deformation and phase transformations over a wide range of temperature-pressure conditions. The device is used to study bcc , fcc , and hcp iron. In bcc iron, room temperature compres...

متن کامل

Flow Behavior of SP-700 Titanium Alloy During Hot Tensile Deformation in α+β and β Phase Regions

In this paper, in order to study the flow behavior and elongation of as-cast ingots of SP-700 titanium alloy, hot tensile test was done in α/β dual phase and β single phase regions using strain rate of 0.1 s-1. Results showed that the hot tensile behavior of SP-700 in the α/β dual phase region (700-900 ºC) was different from the β single phase one (950-1100 ºC) due to the nature of alpha and be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014